
A method of kinetic description of the near-wall plasma
and non-local effects

A.F. Nastoyashchii *, I.N. Morozov

RF SRC, �Troitsk Institute for Innovation and Fusion Research�, Triniti 142190, Troitsk Moscow Region, Russia

Abstract

As is known, ion kinetics play an essential part in the formation of a near-wall plasma layer. The scatter processes

with ions involved (ionization, recombination, charge exchange, etc.) influence both the value of the near-wall potential

jump (and, accordingly, the value of the electric field on the surface) and the unipolar arc formation. The applicability

of the Bohm criterion which is widely used in many works, also depends on the processes of ion scattering. In this paper

a new method of the ion kinetics in a magnetic field is proposed which can been applied to the problems mentioned

above.
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1. Introduction

Kinetic phenomena near the boundary of the plasma

and the material surface are known to be of great im-

portance. In particular, a molecular and charge plasma

composition, an �active particle� concentration (in tech-

nological processes of microelectronics), an electric field

near surface, conditions of the Bohm criterion applica-

bility [1] and etc. are governed by these phenomena.

Solution of appropriate kinetic problems is complicated

by the fact that a wall plasma is usually highly inho-

mogeneous, i.e. particle free paths are comparable or

exceed a typical dimension of spatial inhomogenity. So

conventional methods used for a kinetic description (see,

e.g. [2]) prove to be incorrect. A problem of the kinetic

description of a highly inhomogeneous plasma was

likely to arise, first, in connection with the development

of a theory of arc modes of thermionic converters [3,4]

and the description of non-linear modes of stratification

states of a positive column of a glow discharge.

The problem of developing a theory of a highly in-

homogeneous plasma in the frame of a kinetic approach

has been considered, first, in a work where an appro-

priate method of description of electron kinetics was

suggested and solutions to a number of kinetic problems

were presented [3]. It was found that in a highly inho-

mogeneous plasma a function of the electron distribu-

tion is non-local. In another work a strict solution of

kinetic equation was found for electrons in the Lorentz

approximation [5]. The solution obtained in the work [3]

found their further development with reference to a non-

linear theory of a stratified positive column [6,7], a

theory of arc discharges of thermionic converters and a

number of other areas (plasma chemistry and micro-

electronics technology).

A solution of the kinetic problem for ions is compli-

cated due to the absence of a small parameter similar to

the mass ratio in the case of electrons. In our work [8] a

solution of the problem has been found for conditions in

which the processes of charge exchange of ions and

atoms are predominant. The ionization and recombina-

tion processes were also taken into account. On the basis

of the obtained expression for the function of the ion

distribution in velocity, which, as is in the case of elec-

trons, was non-local, a physical–mathematical model of

the wall plasma was developed and a proper numerical

code was prepared. The calculations performed showed,

that the employment of simplified models which became
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commonly used could lead to incorrect results. For in-

stance, the Bohm criterion, the value of the potential and

the electric field near the surface, the ion flux velocity in

the wall direction are substantially different from the

results obtained with the simplified models. A physical

interpretation of the results obtained is presented in work

[9] (for the plasma in the magnetic field appropriate data

can be found in [10]).The solution technique for the

problem of the kinetic description of ions in a highly

inhomogeneous plasma, suggested in work [8], did not

include the magnetic field. Below the data on the ion

kinetics [8] are generalized for the case of the plasma in

the magnetic field.

2. Ion kinetics study

2.1. On a description of ion kinetics in a wall plasma with

no magnetic field

Consider the kinetics of ions in the gas of the same

type. We neglect the processes of ion elastic collisions

and take into account ionization and recombination

which produce a significant effect on the particle bal-

ance. Assuming that the charge exchange frequency does

not depend on the velocity, the kinetic equation for ions

is simplified: (It is assumed the plasma parameters de-

pend on the x-coordinate only, where the x-axis is per-

pendicular to the wall.)

df
dt

¼ vx
of
ox

þ eEx

mi

of
ovx

¼ nif0

s1

� f
s2

: ð1Þ

Here, ni is the ion concentration, f0 ¼ f0ðvÞ is the nor-

malized function of the neutral particle distribution, Ex

is the electric field in plasma and s�1
1 ¼ s�1 þ ðne=niÞs�1

e ,

s�1
2 ¼ s�1 þ bn2

e where s is the characteristic time of

charge exchange, se is the characteristic time of ioniza-

tion by electron impact and b is the constant of re-

combination. Solution (1) was found in [8] from the

following considerations. As is known, in accordance

with the Liouville theorem in a collisionless plasma the

function of particle distributions in velocity depends

only on motion integrals. In the case of collisions it is

necessary to allow for the dependence of the distribution

function on the spatial x-coordinate, i.e. the distribution

function can be sought in the form of f ¼ f ðex; xÞ, where

ex ¼ miv2
x=2 þ euðxÞ.

After introduction the new variables Eq. (1) is

transformed to the form:

vx0
of
ox0

¼ nif0

s1

� f
s2

; ð2Þ

where x0 ¼ x and vx0 ¼ ð2ðe � euÞ=miÞ1=2.
It is convenient to represent the distribution function

sought as two summands conforming to the particle

movement in the x-axis direction (index þ) or in the

opposite direction ()):

f ¼ f þðvx > 0; xÞ þ f �ðvx < 0; xÞ:

Assuming that the ions fully recombine on the surface

which is taken as the origin, we have for particles with

vx > 0:

f þðvx > 0; 0Þ ¼ 0: ð3Þ

Far from the surface the neutral distribution function

will be considered Maxwellian,

f ðvx;1Þ ¼ nif0ðvxÞs2=s1: ð4Þ

With boundary conditions from (3) and (4) the solution

of Eq. (3) has the form:

f þðvx > 0Þ ¼
Z x

0

dn
nif 0

0

s1vn
exp

 
�
Z x

n

dn0

s2vn0

!
: ð5Þ

The following designations are used above:

vn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
x þ 2e uðxÞ � uðnÞ½ 	=mi

q
; ð6Þ

vn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
x þ 2e½uðxÞ � uðn0Þ	=mi

q
; ð7Þ

f 0
0 ¼

mi

2pT

� �1=2

exp

�
�
miv2

n

2T

	
; ð8Þ

where T is the temperature of neutral particles.

The ion born at point n with velocity vn, at no scat-

tering, will have velocity vx at point x. Above, vn0 is the

velocity of this ion at the intermediate point n0. The

expression for f � depends on the absolute value of ve-

locity. If jvxj > ð�2euðxÞ=miÞ1=2,

f �ðvx < 0Þ ¼
Z 1

x
dn

nif 0
0

s1vn
exp

 
�
Z n

x

dn0

s2vn0

!
: ð9Þ

But if jvxj < ð�2euðxÞ=miÞ1=2, we have the �turning point�
f > x, so miv2

x=2 þ euðxÞ ¼ euðfÞ and the particles which

have velocity vx at point x are divided into two groups.

The first ones were born between x and f at a velocity

vn < 0, and the particles of second group were born be-

tween the wall (x ¼ 0) and f at velocity vn > 0 and then

they changed the velocity direction when reached the

turning point. Both particle groups give the first and the

second summand in the expression for f �, accordingly:

f �ðvx < 0; xÞ ¼
Z 1

x
dn

nif 0
0

s1vn
exp

 
�
Z n

x

dn0

s2vn0

!
þ
Z 1

0

dn
nif 0

0

s1vn

� exp

 
� 2

Z 1

x

dn0

s2vn0
�
Z x

n

dn0

s2vn0

!
: ð10Þ
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If the charge exchange frequency is small and s ¼ 1 we

have, according to (5), (9) and (10), a modified Max-

wellian distribution of type (8) for vx < 0 (for the particle

flying to the surface); for vx > 0 we have f þ ¼ 0, i.e. the

particles reach the surface after having crossed large

distances and recombine. In the opposite case where the

charge exchange frequency is high and s ¼ 0 there oc-

curs a modified Maxwellian distribution for vx > 0 and

vx < 0.

Expressions (5), (9) and (10) were used in work [8] for

a numerical study of the wall plasma. These expressions

also can be employed for processing probe data. Recall

that the function of ion distribution in velocity (FID)

represented as expressions (5), (9) and (10) remains

valid at an arbitrary frequency of scattering (ion path

length).

2.2. Ion kinetics in magnetic field

The approach to the investigation of all of the wall

plasma characteristics suggested in work [8] can be

successfully used in the case of the magnetic field. A

strict solution of the problem requires that the kinetic

equation for ions be solved together with the Poisson

equation for potential. The Boltzmann integral–differ-

ential equation, in the very general case, is reduced to a

pure integral equation for FID using the method of

characteristics. In some cases one can write out an entire

system of first integrals of collisionless motion of a single

ion. If the equation of ion motion can be integrated

analytically, the characteristics are written down ex-

plicitly as is the case with the integral equation for FID.

The perturbation theory allows the cases close to those

integrated to be studied analytically. To illustrate this

concept, a case was considered where the plasma is in a

magnetic field which is directed strictly along the wall. In

other respects the problem statement was made in Sec-

tion 2.1. The kinetic equation takes on the form:

df
dt

¼ vx
of
ox

þ eEx

mi

of
ovx

þ xHvy
of
ovx

� xHvx
of
ovy

¼ nif0

s1

� f
s2

: ð11Þ

Here xH is the ion cyclotron frequency. The Boltzmann

equation does not depend on the z-coordinate. It is quite

easy to show that there are two integrals of motion:

I1 ¼ v2
x=2 þ v2

y=2 þ euðxÞ=mi, I2 ¼ vy þ xHx.
For simplicity, we take T ¼ 0, i.e. the ions are born as

a result of charge exchange or ionization at a zero ve-

locity. Far from the wall the motion along the x-coor-

dinate is periodic, the ion moves between two points: n
and f (n > f). At point n the ion was born with a zero

velocity and f is the turning point, where vx ¼ 0 and

vy 6¼ 0. n and f can be found from the equations:

v2
x=2 þ x2

Hðn � xÞ2=2 þ e uðxÞ½ � uðnÞ	=mi ¼ 0;

x2
Hðn � fÞ2=2 þ e½uðfÞ � uðnÞ	=mi ¼ 0:

Let us designate:

s ¼
Z n

x

dn0

s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½uðnÞ � uðn0Þ	e=mi � x2

Hðn � n0Þ2
q ;

S ¼ 2

Z n

f

dn0

s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½uðnÞ � uðn0Þ	e=mi � x2

Hðn � n0Þ2
q ;

where s denotes a relative number of ions passed from n
to x moving less than a half period and S denotes the

relative number of ions returned to n having made one

turn. By integrating the Boltzmann equation we shall

have an expression for the FID:

f þðvx > 0; vy ; xÞ

¼ � niðnÞdðvy þ xHðx� nÞÞ
s1eEðnÞ=mi

expð�S þ sÞ
1 � expð�SÞ ; ð12Þ

f �ðvx < 0; vy ; xÞ

¼ � niðnÞdðvy þ xHðx� nÞÞ
s1eEðnÞ=mi

expð�sÞ
1 � expð�SÞ : ð13Þ

Here, d is the symbol for the d-function. If the move-

ment along the x-coordinate is aperiodic (e.g. we see the

FID near the wall which absorbs all the ions on it), the

formulas will change:

f þðvx > 0; vy ; xÞ ¼ 0; ð14Þ

f �ðvx < 0; vy ; xÞ ¼ � niðnÞdðvy þ xHðx� nÞÞ
s1eEðnÞ=mi

expð�sÞ:

ð15Þ

3. Conclusions

The proposed method of analytical investigation into

the ion kinetics permits a correct physical–mathematical

model of a highly inhomogeneous near-wall plasma and

also a diverter plasma to be formulated. On the basis of

this model a numerical code could be developed that will

help to conduct a more strict investigation of the wall

plasma than with a conventional approximation.
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